Mark Scheme (Results)

January 2021
Pearson Edexcel International GCSE
In Physics (4PH1) Paper 1PR and Science (Double Award) (4SD0) Paper 1PR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021
Publications Code 4SD0_1PR_2101_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)		-1 for each additional line	4
(b) (i) (ii)	A - electrical; B - light radiation;		1 1

(Total for Question 1 = 6 marks)

(Total for Question 2 = 6 marks)

Question number	Answer	Notes	Marks
3 (a)	planet;	accept planet	1
(b)	comet;	allow full credit for 2.6927937×10^{10} if unit changed to m/day.	
(c)	substitution into given formula; conversion of 35 days into seconds; evaluation; e.g. v $2 \times \pi \times 1.5 \times 10^{11} /(35 \times 24 \times 60 \times 60)$ v $=310000 \mathrm{~m} / \mathrm{s}$	$311665.93(7) 8$ Answer for incorrect $/$ no conversion of days \rightarrow seconds $2.69 \mathrm{etc} \times 10^{10}$ scores 2	

(Total for Question 3 = 5 marks)

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 4 (a) \& idea that not doing so means impossible to tell what change caused the change in the dependent; \& allow idea of a 'fair test' ignore references to accuracy, reliability \& 1 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
straight line; \\
(line) does not go through origin; \\
given line extrapolated to \(x\)-axis;
\[
-300^{\circ} \mathrm{C}
\] \\
any THREE from: \\
MP1 (increase in temperature) increases speed/KE; \\
MP2 collisions between walls and particles more frequent/eq; \\
MP3 idea collisions between walls and particles are harder; \\
MP4 idea that force (between wall and particle) is increased; \\
MP5 \(\mathrm{P}=\mathrm{F} / \mathrm{A}\) so increased force means increased pressure for same area.
\end{tabular} \& \begin{tabular}{l}
condone linear \\
accept in range - 320 to - 280 degrees C
\end{tabular} \& \begin{tabular}{l}
\[
2
\] \\
2 \\
3
\end{tabular} \\
\hline \begin{tabular}{l}
(c) (i) \\
(ii)
\end{tabular} \& ```
conversion of both temperatures to kelvin scale;
substitution;
rearrangement;
evaluation;
e.g.
35 ' C and 340 ' C }->308\mathrm{ and 613 K
112 (kPa)/308 = P / 613
P}=613\times112/30
P = 220 (kPa)
```
number of \{particles/moles/mass/molecules\} of gas \& \begin{tabular}{l}
-1 for POT error \\
accept 222.909... \\
accept 1088 (kPa) for 2 marks (no conversion of temperature) accept type of gas
\end{tabular} \& 4

1 <br>
\hline
\end{tabular}

(Total for Question 4 = 13 marks)

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 5 (a) | ```any attempt at finding the area/ "area = distance" stated; area of triangle = 1/2 x 4.3 < 0.2 (= 0.43 m); area of rectangle = 4.3 x 0.2 (= 0.86 m); distance = 1.29(m);``` | accept area of trapezium $=1 / 2 \times 4.3 \mathrm{x}$ ( $0.2+0.4$ ) for MP2 and MP3. <br> count squares; area of 1 square $=0.001$ <br> (m); distance $=1.29(\mathrm{~m})$ | 4 |
| (b) (i) | ```idea that acceleration = gradient; gradient = (-)4.3 / 0.05; acceleration = (-) 86 (m/s}\mp@subsup{)}{}{2})``` | -1 for POT error | 3 |
| (ii) | (resultant) force $=$ mass $\times$ acceleration / F = ma |  | 1 |
| (iii) | substitution; evaluation; <br> eg $\begin{aligned} & F=0.13 \times 86 \\ & F=11(N) \end{aligned}$ | allow ECF from (i) <br> ignore sign $11.18,11.2$ | 2 |
| (c) | increases time of collision; any reference to shallower gradient on graph; so acceleration will be smaller (in magnitude); |  | 3 |

(Total for Question 5 = 13 marks)

| Question <br> number <br> (a) | Answer | Notes | Marks |
| :---: | :--- | :--- | :---: |
| 6 (degrees); | Allow in range $15-19$ <br> degrees | 1 |  |
| (b) | refractive index $=\sin (\mathrm{i}) / \sin (\mathrm{r}) ;$ | accept n or n for <br> refractive index <br> accept any valid <br> rearrangement | 1 |
| (c) | substitution; <br> evaluation of either $\operatorname{sine~correctly;~}$ <br> evaluation; <br> e.g. <br> refractive index $=\sin (29) / \sin (17)$ <br> refractive index $=0.484 . . / 0.292 . . . ~$ <br> refractive index $=1.7$ | allow ecf from (a) | 3 |

(Total for Question 6 = 5 marks)

(Total for Question 7 = 12 marks)

| Question <br> number |  | Notes | Marks |
| :--- | :--- | :--- | :--- | :---: |
| 8 (a) |  |  |  |
| at least four lines leaving/entering poles; | accept part loops <br> ignore field lines that <br> cross |  |  |
| arrowheads on at least four lines which are self- |  |  |  |
| consistent; |  |  |  |

(Total for Question 8 = 5 marks)

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 9 | Any FIVE from: <br> MP1 reference to Doppler effect; <br> MP2 wavefronts are emitted at constant frequency by buzzer; <br> MP3 wavefronts arrive at student (A) further apart than when they were emitted; <br> MP4 distance between wavefronts is the wavelength; <br> MP5 speed $=$ frequency $\times$ wavelength; <br> MP6 speed of waves is constant; <br> MP7 as speed is constant and wavelength has increased, frequency must decrease; <br> MP8 decrease in frequency is experienced as a decrease in pitch; | Allow 'wavelength increases' if MP3 or MP4 not awarded | 5 |

(Total for Question 9 = 5 marks)

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 10 (a) | $236-(97+135)$ | answer of 4 scores 2 | 2 |
| (b) | (fission) releases neutrons; neutrons can be captured by other uranium nuclei; (these nuclei) then undergo fission; |  | 3 |
| (c) | evidence of halving of 72 (kBq); evidence of four half-lives required; e.g. count rate after 4 half-lives is 4.5 (kBq) evidence that four half-lives is equivalent to 60 million years; |  | 3 |
| (d) | Any FIVE from: <br> MP1 Idea of strong containers; <br> MP2 idea that containers can't rust; <br> MP3 idea that rust-proof containers expensive/difficult to manufacture; MP4 reference to security of waste site; <br> MP5 reference to dilution in sea water; MP6 reference to leakage into water table; | accept idea of a location that prevents rust <br> accept low earthquake risk | 5 |

(Total for Question 10 = 13 marks)

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 11 (a) (i) <br> (ii) <br> (iii) <br> (iv) | ```work done \(=\) force \(\times\) distance (travelled); substitution; evaluation; e.g work done \(=0.89 \times 26\) work done \(=23.1(4 \mathrm{~J})\) evidence of recall of formula GPE = mgh; substitution; evaluation; e.g. GPE \(=\mathrm{mgh}\) GPE \(=1.3 \times 10 \times 0.11\) \(G P E=1.4(3 \mathrm{~J})\) \\ any TWO from: \\ any reference to friction/air resistance; energy transferred to the surroundings (by mechanical work); \\ block not necessarily at constant speed;``` | allow accepted symbols <br> allow $\mathrm{g}=9.8(1)(\mathrm{N} / \mathrm{kg})$ <br> -1 for POT error providing use of $g$ seen <br> allow 'heat/thermal energy transferred to air/ramp by friction for 2 marks | 2 <br> 3 <br> 2 |
| (b) | any TWO from: <br> lower force required; <br> to prevent block from slipping down required <br> / to move block; <br> any TWO from: <br> longer distance required (with a lower force); <br> more inefficient; <br> greater proportion of energy transferred to the surroundings; | allow 'to overcome friction' <br> allow 'easier to move block' for 2 marks <br> Allow idea of more work required (for same increase in GPE) | 4 |

(Total for Question 11 = 12 marks)

(Total for Question 12 = 15 marks)

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

